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Executive summary

The use of composite materials in aircraft structures has increased dramatically over the last
decade. While continuous carbon fiber-reinforced composite materials have outstanding
mechanical properties, they are vulnerable to fire damage. The formation of char and other
thermal by-products due to small-flame fires involving mechanically failed composite materials
can mask relevant aspects of the structural damage morphology and other evidence necessary to
identify the underlying failure mechanisms.

The primary goal of this work was to investigate, document, and confirm characteristic failure
features of mechanically failed specimens and compare the surface fracture morphology of each
specimen type before fire exposure, after fire exposure, and after char removal.

This report focuses on investigating the thermal damage development in mechanically-failed
Cytec T40-800/Cycom® 5215 graphite/epoxy (Cytec) specimens, as well as the establishment of
strategies for char removal from burned composite surfaces. The mechanically failed specimens
included [90/0/90]7 unnotched compression (UNCO), [0]45 short beam strength (SBS), [45/-
45]4S in-plane shear (IPS), and [45/0/-45/90]4S compression after impact (CAI) specimens.
Initially, extensive fractographic imaging of the fracture surfaces of Cytec graphite/epoxy
specimens were performed to identify and document the surface failure features. In general,
composite laminate failure involves local fiber microbuckling, fiber fracture, matrix cracking,
matrix crushing, fiber splitting, chop marks, radial lines, cusps, matrix microflow, riverlines, and
delamination. These key fractographic features can be used to determine the loading conditions
during the mechanical failure of an aerospace composite structure.

Vertical and horizontal fire tests were performed on the mechanically failed graphite/epoxy
composite specimens. In addition, a series of burn tests performed on pristine Hexcel® SGP370-
8H/8552 carbon/epoxy (Hexcel) specimens were used for preliminary assessment of char
removal techniques. The fire damage was characterized by visual inspection and scanning
electron microscopy (SEM). The specimen layup, its relative ply orientation to the heat source,
and fracture surface morphology significantly influenced fire damage formation (i.e., melt
dripping, matrix decomposition, char, soot, matrix cracking, delamination, and residual thickness
increase). The thermal damage development was also influenced by the specimen layup and the
total available free surface area due to increased airflow and oxygen availability. In some cases,
it was observed that the fracture surfaces of recessed fibers sometimes remain relatively
unaffected by fire exposure, which may permit limited post-fire forensic analysis.
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In this report, various surface treatment/cleaning techniques (e.g., chemical soaking,
ultrasonication, and thermal cycling-ultrasonication) were considered for char removal purposes.
Ultrasonication experiments were performed on pristine Hexcel carbon/epoxy and mechanically
failed graphite/epoxy specimens in acetone. Under the influence of ultrasonic frequencies,
surface char is separated from the underlying composite surface. In some cases, thermal cycling
was performed by dipping the specimens in liquid N2 or dipping them in boiling water before
ultrasonication to create thermal instabilities that could weaken the interfacial bonding between
char and the composite surface. While the sonication experiments showed more promise in
removing char from the circumferential surfaces of the in-plane (90°) fibers, char removal from
the exposed fiber ends of the out-of-plane (0°) fibers was more challenging. Thermal cycling in
boiling water before ultrasonication significantly improved char removal from the fiber ends of
the out-of-plane fibers. In many cases, the surrounding resin matrix, and its associated failure
surface features, are completely decomposed following fire application. However, further
experiments are required to quantify the effectiveness of char removal techniques on principal
aerospace composite structural elements.

It should be noted that the small-flame type used in this research is more typical of a small-flame
ignition, like those that would be seen due to spilled chemicals during maintenance, or short-
circuit ignitions. It is not what you would expect in a post-crash aircraft fire. In an actual post-
crash fire event, it is likely that the intensity of a pooled fuel fire will have much higher intensity
and heat flux, with carbon fibers completely decomposed. There is unlikely to be any residual
char on fractured fiber ends, and remaining structure some distance away from the fracture
surface may also be decomposed.

The next phase for this project will address similar experimental char removal techniques and
burning of thicker primary structural elements using an oil-fed burner to more accurately
represent realistic accident conditions.
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1 Introduction

1.1 Background

Typical continuous fiber aerospace composite materials have many advantageous mechanical
and thermal properties over metals. They are lightweight, corrosion-resistant, take complex
shapes, and can have low maintenance and manufacturing costs (Kabche, 2006). Also, fiber-
reinforced composite materials can offer better fatigue resistance than metals. The high stiffness
and strength of continuous fibers facilitate fiber-crack bridging that mitigates the nucleation and
growth of matrix cracks and improves fatigue properties (Botelho, Silva, Pardini, & Rezende,
2006). As a result, the use of composite materials in primary structural applications has increased
dramatically over the past decades. They are now used in aerospace, automotive, and many other
high-tech and low-tech applications that require high stiffness/weight or strength/weight ratios.
Despite their high specific properties, composite materials often suffer from relatively high
moisture absorption and low fracture toughness (Botelho, Silva, Pardini, & Rezende, 2006).
Moreover, their structural performance and damage tolerance generally degrade at elevated
temperatures (Mouritz & Gibson, 2007; Mouritz A. P., 2003).

Although continuous-fiber carbon/epoxy composite materials for aerospace applications provide
high specific mechanical and thermal properties, their use should not affect the post-fire safety
already assured by aluminum aircraft (E7-20031, 2007). The aluminum lower wing panels used
on commercial passenger aircraft wings have been certified as fire-resistant over a wide range of
typical skin thicknesses.

Compared to metallic aircraft structures, carbon/epoxy composite structures can have low
thermal conductivities, affecting heat transfer and the spread of a flame in the event of fire
(Mouritz & Gibson, 2007). However, due to their organic matrix (and sometimes fibers), they are
prone to react with fire (Mouritz & Gibson, 2007; Zhang, 2010). When a thermoset composite
material is exposed to elevated temperatures below the resin curing temperature, the polymer
matrix softens, increasing the likelihood of instability or matrix-dominated failures and loss of
aircraft structural integrity. Once the resin curing temperature is exceeded, thermosetting
matrices will further cure, decompose, and start to combust. At extremely high temperatures
encountered during aircraft fires, the organic matrices and fibers of the composite structures start
decomposing, leading to the generation of toxic smoke and gases. Also, the decomposition of
these organic parts leads to the formation and deposition of char and other fire by-products on
the burned composite surfaces (Mouritz & Gibson, 2007; Mouritz A. P., 2003). Moreover,
thermally-induced large-scale matrix decomposition, fiber ablation/sublimation, and



delamination due to fire exposure can result in significant decreases in composite moduli and
strengths (Mouritz & Gibson, 2007; Zhang, 2010; Chen, 2018; Mouritz & Mathys, 2001,
Mouritz, Gardiner, Mathys, & Townsend, 2001; Mouritz, et al., 2009).

Composite aircraft structures undergo complex multi-mode mechanical failure in critical
structural elements during accidents (Kumar, Raghavendra, Venkataswamy, & Ramachandra,
2012; Camanho, Bowron, & Matthews, 1998; Xiao & Ishikawa, 2005; Greenhalgh, 2009).

A crash scenario often leads to post-crash fire, causing fire damage to principal structural
elements. The resulting changes to the failure surfaces make it difficult to identify the root cause
of the structural failure. Therefore, there is a need to develop an effective fire-damage
assessment methodology to perform fire forensics on the burned aircraft structural elements and
assess the effect of fire damage on the fracture surfaces developed during mechanical failure.

1.2 Overview of fire effects on composite materials

Fire damage in continuous-fiber-reinforced composite materials involves the concurrent and
sequential interaction between complex physical, chemical, thermal, and failure processes
(Mouritz, et al., 2009). The physical processes include constituent material expansion and
contraction, ply-delamination, matrix cracking, and the formation of high-pressure regions due to
matrix outgassing. The chemical processes involve the phase changes that occur inside the
composite material, including the softening, melting, and decomposition of the matrix and char
formation and growth. The thermal processes involve the evolving temperature distributions,
heat transfer through the material due to conduction, convection of the gases formed during the
decomposition, and pyrolysis of the polymeric matrix and organic fibers. Lastly, the failure
processes involve the permanent degradation of the mechanical properties of the composites and
failure of the load-carrying capability of the composite structures due to fire (Mouritz & Gibson,
2007; Mouritz, et al., 2009). Figure 1 (Mouritz, et al., 2009) shows a schematic of the reaction
processes in the through-thickness direction of a hot, decomposing polymer composite during
fire exposure.
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Figure 1. Reaction process of a hot, decomposing polymer composite during fire exposure

When a mechanically failed composite material specimen is subsequently exposed to a fire or a
heat flux, the elevated temperature at the exposed fractured surface leads to significant localized
heat conduction within the specimen. As the local temperature initially increases, the resulting
matrix softening can contribute to various matrix-dominated instability failures that can
jeopardize aircraft structural integrity. Once the increasing temperature exceeds the thermoset
resin curing temperature, the matrix will further cure and decompose, leading to char formation
and the generation of smoke, toxic gases, and vaporized moisture (Mouritz & Gibson, 2007;
Zhang, 2010). Due to the initial low permeability and porosity of typical aerospace composites,
combustion-induced gases trapped inside vacancies (voids) created during the burning result in
matrix regions with very high internal local pressures. These voids can eventually rupture,
leading to extreme ply-delamination and a significant increase in residual laminate thickness
after fire exposure (Mouritz & Gibson, 2007; Zhang, 2010; Mouritz, et al., 2009). In addition,
expanding hot gasses from matrix outgassing dramatically increase convective heat transfer
through the specimen and spread decomposed matrix residues over fire/heat-exposed composite
surfaces. Such residues contribute to the deposition of solid carbonaceous soot and char on the
fractured surface, which can obscure salient aspects of failure surface morphology necessary to
identify operative mechanical failure mechanisms. One key aspect of this research is to



characterize how varying levels of fire exposure alter aerospace composite failure surfaces, and
document those outcomes to facilitate post-fire forensic analysis.

The degree and amount of char formation depend on both the original polymer matrix and
organic fibers (Mouritz & Gibson, 2007). Char structures consist of 85-98% carbon and particles
of aromatic-aliphatic compounds, often with heteroatoms (O, N, P, and S). Depending on the fire
environment, temperature, and chemical composition of the polymer matrix and organic fibers,
char can contain crystalline or amorphous regions (Mouritz & Gibson, 2007). Char can vary in
composition from the melted and partly oxidized matrix (resin) to a highly carbonized material.

Due to its low thermal conductivity, char formed at the exposed surface of the burned composite
material may serve as a protective layer that impedes further burning (Mouritz & Gibson, 2007).
Mouritz and Mathys (2001) used cone calorimetry to investigate the effect of through-thickness
heat flux and fire exposure duration on the char formation in an 11.5 mm thick E-glass woven
roving fabric isophthalic polyester composite laminate. Figure 2 (Mouritz & Mathys, 2001)
shows the cross-section of the woven composite after being exposed to an upper surface heat
flux of 50 kw/m? for four different durations in seconds: (a) 0's, (b) 85 s, (c) 325 s, and (d) 1800
s. As shown in the figure, the char layer thickness increased with the increase in heat flux
exposure- duration. Moreover, the char developed through the entire 11.5 mm specimen
thickness due to the total thermal decomposition and combustion of the polyester matrix.
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Figure 2. Woven E-glass/polyester composite cross-section after heat flux exposure

Mouritz and Mathys (2001) also showed that the rate of char formation was independent of the
heat flux. Exothermic decomposition of the polyester matrix enhanced the combustion process
upon the ignition of the composite. However, the char growth rate depended on the post-ignition
heat exposure time and the rate of oxygen transfer to the combustion front. The combustion front
is defined as the interface between the burned and unburned layers of the composite. The oxygen



transport rate dropped as the char thickness increased (Mouritz & Mathys, 2001), leading to
decreased char formation rate.

In general, composite fire damage involves extensive matrix thermal decomposition, soot
deposition, char formation, severe fire-induced delamination, matrix cracking, residual thickness
increases, and fiber-matrix debonding (Mouritz, et al., 2009). Scanning electron microscopy
(SEM) images of the fire damage induced in an E-glass woven roving fabric and an isophthalic
polyester composite are presented in Figure 3 (Mouritz & Mathys, 2001). Figure 3(a) shows a
through-thickness schematic of the fire damage in the specimen. Figure 3(a) through 3(e) show
representative SEM images of the char layer, an interfacial region (combustion front) between
the char layer and unburned composite, delamination cracks, and a matrix-rich region in the
unburned part of the composite, respectively. The char region primarily comprised burned fibers
since the matrix was mostly decomposed. In the combustion front shown in Figure 3(c), many
fibers displayed longitudinal cracking and were generally detached from the matrix.
Delamination occurred between the underlying unburned layers. The delamination was assumed
to be due to the significant difference in thermal conductivities (and coefficients of thermal
expansion) between the char and underlying composite layers. Finally, the unburned region of
the composite was thermally degraded and contained some matrix-rich pockets (Mouritz &
Mathys, 2001). This research sought to identify appropriate char removal procedures that
enhance the analysis of the specimen damage assessment.
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Figure 3. Comparison of (a) fire-damaged region (b) char layer (c) area between char layer and
unburned composite (d) delamination cracks (e) unburned composite resin-rich area.

1.3 Motivation

The causes of in-flight fires are well understood, and the Federal Aviation Administration (FAA)
and other aviation authorities have set strict fire safety standards. Consequently, in-flight fires on
commercial and General Aviation (GA) aircraft are very uncommon (Mouritz & Gibson, 2007).



Non-fire-related aircraft crashes, however, can result in major post-crash fires on the ground. For
example, after an aircraft crash, fuel tank ruptures may allow direct contact between fuel and
ignition sources (electrical circuits, engines, etc.) (Wood & Sweginnis, 1995).

Post-crash fires involving composite aircraft structures are very undesirable for two main
reasons. First, burning composites can generate thick toxic gases and smoke that can delay and
jeopardize aircraft evacuation, as well as pose a serious health risk to passengers and emergency
personnel (Mouritz & Gibson, 2007). Second, post-crash fires can dramatically alter the exposed
surfaces of mechanically failed structures in ways that inhibit post-crash forensic analysis and
impede accident reconstruction analyses. The latter issue is the primary focus of this research. In
essence, the formation of char and other thermal by-products due to post-crash fires can mask
relevant aspect